List of publications using KU-0058948 hydrochloride (Axon 2001) purchased from Axon Medchem
(Total 26 publication citations listed; updated up to November 2022)
2022
Huiting, W., Dekker, S. L., van der Lienden, J. C., Mergener, R., Musskopf, M. K., Furtado, G. V., ... & Bergink, S. (2022). Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome. Elife, 11, e70726.
* KU-0058594, VE821, and VER15508 from Axon Medchem
Vaitsiankova, A., Burdova, K., Sobol, M., Gautam, A., Benada, O., Hanzlikova, H., & Caldecott, K. W. (2022). PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nature Structural & Molecular Biology, 29(4), 329-338.
* KU0058948 and JH-RE-06 from Axon Medchem
2021Demin, A. A., Hirota, K., Tsuda, M., Adamowicz, M., Hailstone, R., Brazina, J., ... & Caldecott, K. W. (2021). XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Molecular Cell, 81(14), 3018-3030.
Komulainen, E., Badman, J., Rey, S., Rulten, S., Ju, L., Fennell, K., ... & Caldecott, K. W. (2021). Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO reports, 22(5), e51851.
Breuer, G. A., Bezney, J., Fons, N. R., Sundaram, R. K., Feng, W., Gupta, G. P., & Bindra, R. S. (2021). CRISPR screening identifies novel PARP inhibitor classification based on distinct base excision repair pathway dependencies. bioRxiv, 2020-10.
* KU0058948 and AG-014669 from Axon Medchem
Adamowicz, M., Hailstone, R., Demin, A. A., Komulainen, E., Hanzlikova, H., Brazina, J., ... & Caldecott, K. W. (2021). XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nature cell biology, 23(12), 1287-1298.
2020
Breuer, G. A., Bezney, J., Fons, N. R., Sundaram, R. K., Feng, W., Gupta, G. P., & Bindra, R. S. (2020). Targeted DNA Damage Repair CRISPR/Cas9 Knockout Screen Identifies Novel Classification of Poly-ADP Ribose Polymerase Inhibitors Based on Key Base Excision Repair Proteins. bioRxiv.
Hanzlikova, H., Prokhorova, E., Krejcikova, K., Cihlarova, Z., Kalasova, I., Kubovciak, J., ... & Caldecott, K. W. (2020). Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair. Nature communications, 11(1), 1-13.
2019
Martinez-Macias, M. I., Moore, D. A., Green, R. L., Gomez-Herreros, F., Naumann, M., Hermann, A., ... & Caldecott, K. W. (2019). FUS (fused in sarcoma) is a component of the cellular response to topoisomerase I–induced DNA breakage and transcriptional stress. Life science alliance, 2(2).
Nie, Y., Li, Y., Li, X., Wilson, A. F., & Pang, Q. (2019). The non-homologous end-joining activity is required for Fanconi anemia fetal HSC maintenance. Stem cell research & therapy, 10(1), 114.
https://stemcellres.biomedcentral.com/articles/10.1186/s13287-019-1206-0
Mesman, R. L., Calléja, F. M., Hendriks, G., Morolli, B., Misovic, B., Devilee, P., ... & Vreeswijk, M. P. (2019). The functional impact of variants of uncertain significance in BRCA2. Genetics in Medicine, 21(2), 293-302.
https://www.nature.com/articles/s41436-018-0052-2/
Wijenberg, L. (2019). PARP inhibitor resistance in BRCA1/2 mutated tumors (RuG Doctoral dissertation).
http://fse.studenttheses.ub.rug.nl/21252/1/mBMS_2019_WijenbergL.pdf
2018
Boetefuer, E. L., Lake, R. J., Dreval, K., & Fan, H. Y. (2018). Poly (ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress–induced association of Cockayne syndrome group B protein with chromatin. Journal of Biological Chemistry, 293(46), 17863-17874.
https://www.jbc.org/content/293/46/17863.full
Boetefuer, E. L. (2018). Mechanisms Underlying Oxidative Stress-Induced Chromatin Association Of Cockayne Syndrome Protein B (csb). UPENN PhD Dissertation.
https://repository.upenn.edu/edissertations/2766/
Nagle, P. W., Hosper, N. A., Barazzuol, L., Jellema, A. L., Baanstra, M., van Goethem, M. J., ... & Coppes, R. P. (2018). Lack of DNA damage response at low radiation doses in adult stem cells contributes to organ dysfunction. Clinical Cancer Research, clincanres-0533.
* KU-55933 and KU-0058948 from Axon Medchem
Mesman, R. L., Calléja, F. M., Hendriks, G., Morolli, B., Misovic, B., Devilee, P., ... & Vreeswijk, M. P. (2018). The functional impact of variants of uncertain significance in BRCA2. Genetics in Medicine, 1.
2017
Hoch, N. C., Hanzlikova, H., Rulten, S. L., Tétreault, M., Komulainen, E., Ju, L., ... & Staras, K. (2017). XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature, 541(7635), 87.
Mateos-Gomez, P. A. (2017). Deciphering the Role of Alternative Non-Homologous End Joining (Alt-NHEJ) DNA Repair in Breast Cancer. New York University School of Medicine New York United States.
Meijers-Heijboer, J. W., Waisfisz, Q., & Wolthuis, R. M. ANALYSIS of THE fANCoNI ANEmIA REPAIR PATHWAY IN BREAST CANCER IDENTIfIES RECQL5 AmPLIfICATIoN AS A mEDIAToR of DNA CRoSSLINKER SENSITIvITY. HEREDITARY BREAST CANCER Of genes and therapy, 81.
Day, T. A., Layer, J. V., Cleary, J. P., Guha, S., Stevenson, K. E., Tivey, T., ... & Root, D. E. (2017). PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nature Communications, 2017 8, 15110.
Skvarova Kramarzova, K., Osborn, M. J., Webber, B. R., DeFeo, A. P., McElroy, A. N., Kim, C. J., & Tolar, J. (2017). CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. International Journal of Molecular Sciences, 18(6), 1269.
Gilmore, J. M., Sardiu, M. E., Groppe, B. D., Thornton, J. L., Liu, X., Dayebgadoh, G., ... & Florens, L. (2016). Wdr76 co-localizes with heterochromatin related proteins and rapidly responds to dna damage. PloS one, 11(6), e0155492.
Hanzlikova, H., Gittens, W., Krejcikova, K., Zeng, Z., & Caldecott, K. W. (2016). Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic acids research, 45(5), 2546-2557.
Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining.
Zong, D., Callén, E., Pegoraro, G., Lukas, C., Lukas, J., & Nussenzweig, A.
Nucleic Acids Res. 2015 May 26;43(10):4950-61. doi: 10.1093/nar/gkv336. Epub 2015 Apr 27.
Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.
PA Mateos-Gomez, F Gong, N Nair, KM Miller, E Lazzerini-Denchi & A Sfeir
Nature 2015, 518, 254–257. doi:10.1038/nature14157
Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.
PA Mateos-Gomez, F Gong, N Nair, KM Miller, E Lazzerini-Denchi & A Sfeir
Nature 2015, 518, 254–257. doi:10.1038/nature14157