List of publications utilizing SSR 149415 - Nelivaptan (Axon 1114) purchased from Axon Medchem

(Total of 41 publication citations listed; last updated on December 2022)

2022
Hernández-Pérez, O. R., Hernández, V. S., Zetter, M. A., Eiden, L. E., & Zhang, L. (2022). Nucleus of the lateral olfactory tract (NLOT): a hub linking water homeostasis-associated SON-AVP circuit and neocortical regions to promote social behavior under osmotic challenge. bioRxiv, 2022-07.
https://www.biorxiv.org/content/10.1101/2022.07.01.498472v2.full

Hernández‐Pérez, O. R., Hernández, V. S., Zetter, M. A., Eiden, L. E., & Zhang, L. (2022). Nucleus of the lateral olfactory tract: A hub linking the water homeostasis‐associated supraoptic nucleus‐arginine vasopressin circuit and neocortical regions to promote social behavior under osmotic challenge. Journal of Neuroendocrinology, e13202.
https://onlinelibrary.wiley.com/doi/full/10.1111/jne.13202

Takahashi, K., Shima, T., Soya, M., Yook, J. S., Koizumi, H., Jesmin, S., ... & Soya, H. (2022). Exercise-induced adrenocorticotropic hormone response is cooperatively regulated by hypothalamic arginine vasopressin and corticotrophin-releasing hormone. Neuroendocrinology112(9), 894-903.
https://onlinelibrary.wiley.com/doi/full/10.1111/jne.13164
* both SSR149415 and SR49059 from Axon Medchem

Kanako, T. (2022). 走運動誘発性 ACTH 分泌応答の視床下部調節機構に関する神経内分泌学的研究: 中強度運動時のヒトのストレス反応を探るための動物モデルを用いて.
https://tsukuba.repo.nii.ac.jp/record/2006116/files/DA010475.pdf

2021
Komnenov, D., Quaal, H., & Rossi, N. F. (2021). V1a and V1b vasopressin receptors within the paraventricular nucleus contribute to hypertension in male rats exposed to chronic mild unpredictable stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology320(3), R213-R225.
https://journals.physiology.org/doi/full/10.1152/ajpregu.00245.2020

Mohan, S., Flatt, P. R., Irwin, N., & Moffett, R. C. (2021). Weight‐reducing, lipid‐lowering and antidiabetic activities of a novel arginine vasopressin analogue acting at the V1a and V1b receptors in high‐fat‐fed mice. Diabetes, Obesity and Metabolism23(10), 2215-2225.
https://dom-pubs.onlinelibrary.wiley.com/doi/full/10.1111/dom.14462

2020
Joye, D. A., Rohr, K. E., Keller, D., Inda, T., Telega, A., Pancholi, H., ... & Evans, J. A. (2020). Reduced VIP expression affects circadian clock function in VIP-IRES-CRE mice (JAX 010908). Journal of biological rhythms35(4), 340-352.
https://journals.sagepub.com/doi/pdf/10.1177/0748730420925573

2019
Harper, K. M., Knapp, D. J., Butler, R. K., Cook, C. A., Criswell, H. E., Stuber, G. D., & Breese, G. R. (2019). Amygdala arginine vasopressin modulates chronic ethanol withdrawal anxiety‐like behavior in the social interaction task. Alcoholism: Clinical and Experimental Research.
https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14163

JOHNSON, Richard J.; GARCIA, Miguel A. Lanaspa; JENSEN, Thomas. SELECTIVE INHIBITION OF V1b AND/OR STABILIZATION OR UPREGULATION OF V1a FOR TREATING FATTY LIVER. U.S. Patent Application No 16/131,410, 2019.
https://patents.google.com/patent/US20190083568A1/en

2018
Гончарова, Н. Д., Чигарова, О. А., & Оганян, Т. Э. (2018). Влияние блокады вазопрессинового V1b-рецептора на активность гипоталамо-гипофизарно-адреналовой системы у старых обезьян с депрессивно-подобным и беспокойным поведением, подвергнутых стрессовому воздействию или введению вазопрессина. Бюллетень экспериментальной биологии и медицины166(7), 96-102.
https://elibrary.ru/item.asp?id=35184681

Tokuda, I. T., Ono, D., Honma, S., Honma, K. I., & Herzel, H. (2018). Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors. PLoS computational biology, 14(12), e1006607.
https://journals.plos.org/ploscompbiol/article?rev=1&id=10.1371/journal.pcbi.1006607

Sehgal, A. (2018). Asymmetric vasopressin signaling spatially organizes the master circadian clock.
https://www.researchgate.net/profile/Seth_Blackshaw/publication/325928960_Asymmetric_vasopressin_signaling_spatially_
organizes_the_master_circadian_clock/links/5b311647a6fdcc8506cc9682/Asymmetric-vasopressin-signaling-spatially-organizes-the-master-circadian-clock.pdf

Tang, Y., Sun, Y. N., Xu, R., Huang, X., Gu, S., Hong, C. C., ... & Shi, J. (2018). Arginine vasopressin differentially modulates GABA ergic synaptic transmission onto temperature‐sensitive and temperature‐insensitive neurons in the rat preoptic area. European Journal of Neuroscience, 47(7), 866-886.
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13868

Goncharova, N. D., & Oganyan, T. E. (2018). Age-related differences in stress responsiveness of the hypothalamic-pituitary-adrenal axis of nonhuman primates with various types of adaptive behavior. General and comparative endocrinology, 258, 163-172.
 
Hernández-Pérez, O. R., Crespo-Ramírez, M., Cuza-Ferrer, Y., Anias-Calderón, J., Zhang, L., Roldan-Roldan, G., ... & de la Mora, M. P. (2018). Differential activation of arginine-vasopressin receptor subtypes in the amygdaloid modulation of anxiety in the rat by arginine-vasopressin. Psychopharmacology, 235(4), 1015-1027.
 
Bedont, J. L., Rohr, K. E., Bathini, A., Hattar, S., Blackshaw, S., Sehgal, A., & Evans, J. A. (2018). Asymmetric vasopressin signaling spatially organizes the master circadian clock. Journal of Comparative Neurology.
 
Dannenhoffer, C. A., Kim, E. U., Saalfield, J., Werner, D. F., Varlinskaya, E. I., & Spear, L. P. (2018). Oxytocin and vasopressin modulation of social anxiety following adolescent intermittent ethanol exposure. Psychopharmacology, 1-13.
 
ZELTSER, Lori Michelle; HASSOUNA, Rim; MADRA, Moneek. Methods for treating and diagnosing eating disorders. U.S. Patent Application No 15/784,927, 2018.
 
Гончарова, Н. Д., Чигарова, О. А., & Оганян, Т. Э. (2018). Влияние блокады вазопрессинового V1b-рецептора на активность гипоталамо-гипофизарно-адреналовой системы у старых обезьян с депрессивно-подобным и беспокойным поведением, подвергнутых стрессовому воздействию или введению вазопрессина. Бюллетень экспериментальной биологии и медицины, 166(7), 96-102.

2017
Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T., & Kozorovitskiy, Y. (2017). Biased Oxytocinergic Modulation of Midbrain Dopamine Systems. Neuron.
http://www.sciencedirect.com/science/article/pii/S0896627317305019

Bülbül, M., Sinen, O., Gemici, B., & İzgüt-Uysal, V. N. (2017). Opposite effects of central oxytocin and arginine vasopressin on changes in gastric motor function induced by chronic stress. Peptides, 87, 1-11.
 
Yan, X., Chen, X., Guo, Y., He, D., Chen, Y., Xia, C., & Wang, J. (2017). Arginine vasopressin alters both spontaneous and phase-locked synaptic inputs to airway vagal preganglionic neuron via activation of V1a receptor: insights into stress-related airway vagal excitation. Frontiers in cellular neuroscience, 11.
 
Goncharova, N. D., & Oganyan, T. E. (2017). Age-related differences in stress responsiveness of the hypothalamic-pituitary-adrenal axis of nonhuman primates with various types of adaptive behavior. General and Comparative Endocrinology.
http://www.sciencedirect.com/science/article/pii/S0016648017303696

2016
Namba, T., Taniguchi, M., Murata, Y., Tong, J., Wang, Y., Okutani, F., ... & Kaba, H. (2016). Activation of arginine vasopressin receptor 1a facilitates the induction of long-term potentiation in the accessory olfactory bulb of male mice. Neuroscience letters, 634, 107-113.

http://www.sciencedirect.com/science/article/pii/S0304394016307406

Ono, D., Honma, S., & Honma, K. I. (2016). Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Science advances, 2(9), e1600960.
http://advances.sciencemag.org/content/2/9/e1600960

Zhu, J., Chen, Z., Zhu, L., Meng, Z., Wu, G., & Tian, Z. (2016). Arginine Vasopressin and Arginine Vasopressin Receptor 1b Involved in Electroacupuncture‐Attenuated Hypothalamic‐Pituitary‐Adrenal Axis Hyperactivity in Hepatectomy Rats. Neuromodulation: Technology at the Neural Interface, 19(5), 498-506.
http://onlinelibrary.wiley.com/doi/10.1111/ner.12366/full

Pais, R., Rievaj, J., Meek, C., Costa, G., Jayamaha, S., Alexander, R.T., Reimann, F. and Gribble, F., 2016. Role of enteroendocrine L‐cells in arginine vasopressin‐mediated inhibition of colonic anion secretion. The Journal of Physiology.
http://onlinelibrary.wiley.com/doi/10.1113/JP272053/full

Targeted activation of the hippocampal CA2 area strongly enhances social memory. 
Smith, A.S., Avram, S.W., Cymerblit-Sabba, A., Song, J. and Young, W.S. 
Molecular psychiatry. 2016, in press.

2015
Goncharova, N. D., Oganyan, T. E., Marenin, V. Y., & Vengerin, A. A. (2015). Age-specific and individual features of vasopressinergic regulation of the hypothalamic–pituitary–adrenal system in primates. Bulletin of Experimental Biology and Medicine158(6), 804-806.
https://link.springer.com/article/10.1007/s10517-015-2866-0

Goncharova, N. D., Marenin, V. Y., & Oganyan, T. E. (2015). Individual differences in stress responsiveness of the hypothalamic-pituitary-adrenal axis and its vasopressinergic regulation in old monkeys. Journal of Behavioral and Brain Science5(07), 280.
https://www.scirp.org/html/8-3900378_57919.htm

Arginine Vasopressin and Arginine Vasopressin Receptor 1b Involved in Electroacupuncture-Attenuated Hypothalamic-Pituitary-Adrenal Axis Hyperactivity in Hepatectomy Rats.
Zhu, J., Chen, Z., Zhu, L., Meng, Z., Wu, G. and Tian, Z.
Neuromodulation: Technology at the Neural Interface. 2015.

AVP modulation of the vestibular nucleus via V1b receptors potentially contributes to the development of motion sickness in rat. 
Xu, L.H., Tang, G.R., Yang, J.J., Liu, H.X., Li, J.C. and Jiang, Z.L. 
Molecular Brain 2015, 8(1), 86.

Individual Differences in Stress Responsiveness of the Hypothalamic-Pituitary-Adrenal Axis and Its Vasopressinergic Regulation in Old Monkeys. 
Goncharova, N.D., Marenin, V.Y. and Oganyan, T.E. 
J. Behavioral and Brain Science, 2015, 5(07), p.280.

Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. 
ElWerfali, W., Toomasian, C., MaliszewskaScislo, M., Li, C. and Rossi, N.F. 
Exper. Physiol. 2015, 100(5), 553-565.

2014
Goncharova, N. D. (2014). Age-related changes in the hypothalamic-pituitary-adrenal axis: experimental studies in primates. Advances in Gerontology4, 269-273.
https://link.springer.com/article/10.1134/S2079057014040109

Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor. 
BD Rood, SG Beck, 
Neuroscience. 2014 Feb 28;260:205-16.

2013
Arginine vasopressin enhances cell survival via a G protein-coupled receptor kinase 2/β-arrestin1/extracellular-regulated kinase 1/2-dependent pathway in H9c2 cells. 
Zhu W, Tilley DG, Myers VD, Coleman RC, Feldman AM.
Mol Pharmacol. 2013 Aug;84(2):227-35.

2012
Differential effects of osmotic and SSR149415 challenges in maternally separated and control rats: The role of vasopressin on spatial learning. 
Hernandez VS, Ruíz-Velazco S, Zhang L.
Neurosci Lett. 2012 Oct 24;528(2):143-7.

Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. 
Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G.
J Neuroendocrinol. 2012 Apr;24(4):609-28.

A Fall in Plasma Free Fatty Acid (FFA) Level Activates the Hypothalamic-Pituitary-Adrenal Axis Independent of Plasma Glucose: Evidence for Brain Sensing of Circulating FFA. 
Oh YT, Oh KS, Kang I, Youn JH.
Endocrinology. 2012 Aug;153(8):3587-92.

Alteration of antral and proximal colonic motility induced by chronic psychological stress involves central urocortin 3 and vasopressin in rats.
Ataka K, Nagaishi K, Asakawa A, Inui A, Fujimiya M.
Am J Physiol Gastrointest Liver Physiol. 2012 Aug 15;303(4):G519-28.

Please wait...