List of publications using of Vorapaxar - SCH530348 (Axon 1755) purchased from Axon Medchem

(Total 27 publication citations from 2013 to August 2018)
 
2018
White, M. J., Chinea, L. E., Pilling, D., & Gomer, R. H. (2018). Protease activated‐receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. Journal of leukocyte biology, 103(1), 119-128.
 
Gupta, N., Sinha, R., Krasnodembskaya, A., Xu, X., Nizet, V., Matthay, M. A., & Griffin, J. H. (2018). The TLR4‐PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells, 36(5), 796-806.
 
French, S. L., Thalmann, C., Bray, P. F., Macdonald, L. E., Murphy, A. J., Sleeman, M. W., & Hamilton, J. R. (2018). A function-blocking PAR4 antibody is markedly antithrombotic in the face of a hyperreactive PAR4 variant. Blood advances, 2(11), 1283-1293.
 
Gandhi, D. M., Majewski, M. W., Rosas Jr, R., Kentala, K., Foster, T. J., Greve, E., & Dockendorff, C. (2018). Characterization of Protease-Activated Receptor (PAR) ligands: Parmodulins are reversible allosteric inhibitors of PAR1-driven calcium mobilization in endothelial cells. Bioorganic & medicinal chemistry, 26(9), 2514-2529.
* Vorapaxar, Q94 and E5555 from Axon Medchem
 
BRAY, Paul; HOLINSTAT, Michael; EDELSTEIN, Leonard. Par4 inhibitor therapy for patients with par4 polymorphism. U.S. Patent Application No 15/703,739, 2018.
 
Antoniak, S., Tatsumi, K., Schmedes, C. M., Grover, S. P., Pawlinski, R., & Mackman, N. (2018). Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity. Journal of molecular and cellular cardiology.
 
2017
Gupta, N., Sinha, R., Krasnodembskaya, A., Xu, X., Nizet, V., Matthay, M. A., & Griffin, G. (2017). The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Murine E. coli Pneumonia.
 
Byskov, K., Boettger, T., Ruehle, P. F., Nielsen, N. V., Etscheid, M., & Kanse, S. M. (2017). Factor VII activating protease (FSAP) regulates the expression of inflammatory genes in vascular smooth muscle and endothelial cells. Atherosclerosis, 265, 133-139.
*Vorapax and SCH79797 from Axon Medchem
 
Moschonas, I. C., Kellici, T. F., Mavromoustakos, T., Stathopoulos, P., Tsikaris, V., Magafa, V., ... & Tselepis, A. D. (2017). Molecular requirements involving the human platelet protease-activated receptor-4 mechanism of activation by peptide analogues of its tethered-ligand. Platelets, 28(8), 812-821.
 
BRAY, Paul; HOLINSTAT, Michael; EDELSTEIN, Leonard. PAR4 inhibitor therapy for patients with PAR4 polymorphism. U.S. Patent No 9,789,087, 2017.
 
GOLDMAN, Steven A.; AUVERGNE, Romane. Use of inhibitors of binding between a par-1 receptor and its ligands for the treatment of glioma. U.S. Patent Application No 15/425,562, 2017.
Moschonas, I. C., Kellici, T. F., Mavromoustakos, T., Stathopoulos, P., Tsikaris, V., Magafa, V., ... & Tselepis, A. D. (2017). Molecular requirements involving the human platelet protease-activated receptor-4 mechanism of activation by peptide analogues of its tethered-ligand. Platelets, 1-10.
 
Vinholt, P. J., Frederiksen, H., Hvas, A. M., Sprogøe, U., & Nielsen, C. (2017). Measurement of platelet aggregation, independently of patient platelet count: a flow‐cytometric approach. Journal of Thrombosis and Haemostasis.
 
2016
Auvergne, R., Wu, C., Connell, A., Au, S., Cornwell, A., Osipovitch, M., ... & Goldman, S. A. (2016). PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo. Oncogene, 35(29), 3817.
 
Stahn, S., Thelen, L., Albrecht, I. M., Bitzer, J., Henkel, T., & Teusch, N. E. (2016). Teleocidin A2 inhibits human proteinase‐activated receptor 2 signaling in tumor cells. Pharmacology research & perspectives, 4(4). DOI: 10.1002/prp2.230.
 
Par4 inhibitor therapy for patients with par4 polymorphism. Bray, P., Holinstat, M., & Edelstein, L. (2016). U.S. Patent Application No. 15/226,425.
 
Palekar, R. U., Vemuri, C., Marsh, J. N., Arif, B., & Wickline, S. A. (2016). Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models. Journal of vascular surgery, 64(5), 1459-1467.
 
2013 to 2015
Kim, H. N., Kim, Y. R., Ahn, S. M., Lee, S. K., Shin, H. K., & Choi, B. T. (2015). Protease activated receptor‐1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood–brain barrier. Journal of neurochemistry, 135(3), 577-588.
 
Use of inhibitors of binding between a par-1 receptor and its ligands for the treatment of glioma. Goldman, S. A., & Auvergne, R. (2014). U.S. Patent Application No. 14/776,961. 
 
José, R. J., Williams, A. E., Mercer, P. F., Sulikowski, M. G., Brown, J. S., & Chambers, R. C. (2015). Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. The Journal of Immunology, 194(12), 6024-6034.
 
White, M. J., Galvis-Carvajal, E., & Gomer, R. H. (2015). A brief exposure to tryptase or thrombin potentiates fibrocyte differentiation in the presence of serum or serum amyloid p. The Journal of Immunology, 194(1), 142-150.
(* SCH79797 and Vorapaxar from Axon Medchem)
 
Aisiku, O., Peters, C. G., De Ceunynck, K., Ghosh, C. C., Dilks, J. R., Fustolo-Gunnink, S. F., ... & Flaumenhaft, R. (2015). Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood, 125(12), 1976-1985.
 
Edelstein, L. C., Simon, L. M., Lindsay, C. R., Kong, X., Teruel-Montoya, R., Tourdot, B. E., ... & Holinstat, M. (2014). Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood, 124(23), 3450-3458.
 
Zhao, F., Guo, X., Wang, Y., Liu, J., Lee, W. H., & Zhang, Y. (2014). Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PloS one, 9(8), e104191.
 
Smoktunowicz, N. (2014). Procoagulant signalling in lung injury and fibrosis (Doctoral dissertation, UCL (University College London)).
(* GB83 and Vorapaxar from Axon Medchem)
 
Huang, S. C. (2014). Proteinase-activated receptor-1 (PAR1) and PAR2 mediate relaxation of guinea pig internal anal sphincter. Regulatory peptides, 189, 46-50.
(* GB83 and Vorapaxar from Axon Medchem)
 
Aerts, L., Hamelin, M. È., Rhéaume, C., Lavigne, S., Couture, C., Kim, W., ... & Riteau, B. (2013). Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One, 8(8), e72529.
(*SCH79797 and Vorapaxar from Axon Medchem)

(This is an incomplete list, updated AUGUST-2017)
Please wait...