List of publications using MK 1775 (Axon 1494) purchased from Axon Medchem 

(Total 34 publication citations listed; updated up to June 2022)

2022
Wu, X., Seraia, E., Hatch, S. B., Wan, X., Ebner, D. V., Aroldi, F., ... & Macaulay, V. M. (2022). CHK1 inhibition exacerbates replication stress induced by IGF blockade. Oncogene41(4), 476-488.
Donker, L., Vliem, M. J., Canever, H., Gómez-González, M., Bosch-Padrós, M., Pannekoek, W. J., ... & Gloerich, M. (2021). A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1. BioRxiv.
https://www.biorxiv.org/content/10.1101/2021.11.29.470352v1.full

van Bijsterveldt, L., Landsverk, H. B., Nähse, V., Durley, S. C., Sarkar, S. S., Syljuåsen, R. G., & Humphrey, T. C. (2021). R-loop-induced p21 expression following CDC73, CTR9, and PAF1 loss protects cancer cells against replicative catastrophe following WEE1 inhibition. bioRxiv.
Kok, Y. P., Guerrero Llobet, S., Schoonen, P. M., Everts, M., Bhattacharya, A., Fehrmann, R. S., ... & van Vugt, M. A. (2020). Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis9(10), 1-15.
VE-822 & MK 1775 from Axon Medchem
 
Iannuzzi, C. A., Indovina, P., Forte, I. M., Di Somma, S., Malfitano, A. M., Bruno, M., ... & Giordano, A. (2020). Pharmacological inhibition of wee1 potentiates the antitumoral effect of the dl922-947 oncolytic virus in malignant mesothelioma cell lines. International journal of molecular sciences21(19), 7333.
https://www.mdpi.com/847272

Wu, X. (2020). Exploiting replication stress induced by IGF blockade in cancer therapy (Doctoral dissertation, University of Oxford).
Goto, T., Homma, H., Kaida, A., & Miura, M. (2019). WEE1 inhibition enhances sensitivity to hypoxia/reoxygenation in HeLa cells. Journal of Radiation Research, 60(5), 709-713.
https://academic.oup.com/jrr/article-abstract/60/5/709/5539284

Walton, C. C., Zhang, W., Patiño-Parrado, I., Barrio-Alonso, E., Garrido, J. J., & Frade, J. M. (2019). Primary neurons can enter M-phase. Scientific reports9(1), 1-15.
* MK1775 and AZ3146 from Axon Medchem

Garrido, J. J., & Frade, J. M. primary neurons can enter M-phase.
* MK1775 and AZ3146 from Axon Medchem

Ranoa, D. R. E., Widau, R. C., Mallon, S., Parekh, A. D., Nicolae, C. M., Huang, X., ... & Moldovan, G. L. (2019). STING promotes homeostasis via regulation of cell proliferation and chromosomal stability. Cancer research, 79(7), 1465-1479.
Garrido, J. J., & Frade, J. M. primary neurons can enter M-phase.
*RO3306, MK1775 and AZD3146 from Axon Medchem

2018
Jiaranuchart, S., Kaida, A., Onozato, Y., Harada, H., & Miura, M. (2018). DNA damage response following X-irradiation in oral cancer cell lines HSC3 and HSC4. Archives of oral biology, 90, 1-8.

Walton, C. C., Zhang, W., Patiño-Parrado, I., Barrio-Alonso, E., Garrido, J. J., & Frade, J. M. (2018). Checkpoint signaling abrogation after cell cycle reentry reveals that differentiated neurons are mitotic cells. bioRxiv, 288589.
*RO3306, MK1775 and AZD3146 from Axon Medchem

Enríquez, W., & Carlos, C. (2018). Mitotic biology of primary neurons.
*RO3306, MK1775 and AZD3146 from Axon Medchem

2017
Schoonen, P. M., Talens, F., Stok, C., Gogola, E., Heijink, A. M., Bouwman, P., ... & Rottenberg, S. Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. 
Nature Communications, 2017, 8, 15981.
(*olaparib and MK-1775 from Axon Medchem).
 
2016
Raabe, T. T. H. (2016). DNA damage signaling factors protecting cancer cells against replication stress (Master's thesis).
 
Clausse, V., Goloudina, A.R., Uyanik, B., Kochetkova, E.Y., Richaud, S., Fedorova, O.A., Hammann, A., Bardou, M., Barlev, N.A., Garrido, C. and Demidov, O.N., 2016. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy. Cell Death & Disease, 7(4), p.e2195.
http://www.nature.com/cddis/journal/v7/n4/abs/cddis201696a.html

2015
Treatment sensitizers for high-grade brain tumors.
Hiddingh, L. (2015). 
PhD Thesis VU Amsterdam.

Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways. 
Aarts, M., Bajrami, I., Herrera-Abreu, M. T., Elliott, R., Brough, R., Ashworth, A., ... & Turner, N. C. 
Mol. Cancer Ther. 2015, 14(4), 865-876.


Abrogating G2/M checkpoint through WEE1 inhibition in combination with chemotherapy as a promising therapeutic approach for mesothelioma.

Indovina, P., Marcelli, E., Di Marzo, D., Casini, N., Forte, I. M., Giorgi, F., ... & Giordano, A.
Cancer Biol. & Ther. 2014, 15(4), 380-388. DOI:10.4161/cbt.27623

Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer.
Karnak, D., Engelke, C. G., Parsels, L. A., Kausar, T., Wei, D., Robertson, J. R., ... & Morgan, M. A.
Clin. Cancer Res. 2014, 20(19), 5085-5096.

Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells.
Nahar, K., Goto, T., Kaida, A., Deguchi, S., & Miura, M.
J. Radiation Res. 2014, 55(5), 1021-1027.

Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma.
PS Harris, S Venkataraman, I Alimova, DK Birks, I Balakrishnan, B Cristiano, AM Donson, AM Dubuc, MD Taylor, P Reigan, R Vibhakar
Mol. Cancer 2014, 13:72 doi:10.1186/1476-4598-13-72

Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation.
KD Davies, PLA Cable, JE Garrus, FX Sullivan, I von Carlowitz, Y Le Huerou, E Wallace, RD Woessner, S Gross.
Cancer Biol. Ther. 2011, 12 (9), 788-796. 

G2 checkpoint siRNA screen in irradiated cancer cells: validation of candidate positive hits.
IME Daviknes,
NTNU M.Sc thesis
2011 July. (Supervisor: P Bruheim)

Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia.
CC Porter, J Kim, S Fosmire, CM Gearheart, A van Linden, D Baturin, V Zaberezhnyy, PR Patel, D Gao, AC Tan, J DeGregori.
Leukemia 2012, 26, 1266–1276

Combined inhibition of Chk1 and Wee1: In vitro synergistic effect translates to tumor growth inhibition in vivo.
L Carrassa, R Chilà, M Lupi, F Ricci, C Celenza, M Mazzoletti, M Broggini, G Damia.

Cell Cycle 2012, 11 (13), 2507-2517.

Forced activation of Cdk1 via wee1 inhibition impairs homologous recombination.
M Krajewska, AM Heijink, YJWM Bisselink, RI Seinstra, HHW Silljé, EGE de Vries, MATM van Vugt.
Oncogene. 2013 Jun 13;32(24):3001-8.

Skin Equivalents: A Tool for the Discovery and Validation of Pharmacodynamic Biomarkers.
C Paolini, A Orecchia, CM Failla, P Gallinari, G Zambruno, C Steinkühler.
Cancer Investigation. 2013, 31 (1), 60-66.

WEE1 Kinase Inhibition Enhances the Radiation Response of Diffuse Intrinsic Pontine Gliomas.
V Caretti, L Hiddingh, T Lagerweij, P Schellen, PW Koken, E Hulleman, DG van Vuurden, WP Vandertop, GJL Kaspers, DP Noske, T Wurdinger.
Mol. Cancer Ther. 2013, 12, 141.  

Brain-Derived Neurotrophic Factor-Dependent cdk1 Inhibition Prevents G2/M Progression in Differentiating Tetraploid Neurons.
MC Ovejero-Benito, JM Frade.

PLoS ONE 2013, 8(5): e64890. doi:10.1371/journal.pone.0064890

Individualized Systems Medicine (ISM) strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia.
Pemovska, T., Kontro, M., Yadav, B., Edgren, H., Eldfors, S., Szwajda, A., ... & Wennerberg, K.
Cancer Discovery, 2013, CD-13.

G2 checkpoint siRNA screen in irradiated cancer cells: validation of candidate positive hits
Daviknes, Ingrid Marie Eriksen
Master thesis (2011)

Please wait...