Apoptosis
The number of cells in multicellular organism is tightly regulated. Not simply by controlling the rate of cell division, but also by controlling the rate of cell death. If cells are no longer needed, they commit suicide by activating an intracellular death program. This process is therefore called programmed cell death or apoptosis (from a Greek word meaning “falling off,” as leaves from a tree). The intrinsic apoptotic pathway occurs by the release of cytochrome c from mitochondria. The extrinsic apoptotic pathway is caused by the binding of death ligands, such as TNF (tumor necrosis factor), Fas, and TRAIL (TNF-related-apoptosis-inducing ligand), to their corresponding receptors. Although programmed cell death is involved in a number of key biological phenomena, aberrant apoptosis results in diverse human diseases [1].
The amount of apoptosis that occurs in developing and adult animal tissues is surprisingly large. In the developing vertebrate nervous system up to half or more of the nerve cells normally die soon after they are formed. In a healthy adult human, billions of cells die in the bone marrow and intestine every hour. Although this process seems remarkably wasteful -especially as the vast majority are perfectly healthy at the time they kill themselves- programmed cell death plays an important role during embryonic development, as hands and feet, for example, are sculpted by apoptosis: they start out as spadelike structures, and the individual digits separate only as the cells between them die. In other cases, cells die when the structure they form is no longer needed. When a tadpole changes into a frog, the cells in the tail die, and the tail, which is not needed in the frog, disappears. In many other cases, cell death helps regulate cell numbers. In the developing nervous system, for example, cell death adjusts the number of nerve cells to match the number of target cells that require innervation. In all these cases, the cells die by apoptosis as well[2].
[2] D.R. Williams et al. An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew. Chem. Int. Ed. Engl. 2008, 47, 7466-7469.
[1] B. Alberts, A. Johnson, J. Lewis et al. Molecular Biology of the Cell. 4th edition. New York. Garland Science, 2002.
Axon ID | Name | Description | From price | |
---|---|---|---|---|
4192 | (S)-BI 2536 | Dual PLK1/BRD4 bromodomain inhibitor | €170.00 | |
1687 | (±)-E-Homocamptothecin | Potent topoisomerase I (Topo 1) inhibitor | €120.00 | |
2222 | 10058-F4 | c-Myc inhibitor inducing cell-cycle arrest at G0/G1 phase | €80.00 | |
2989 | 15-LOX-1 inhibitor i472 | Inhibitor of 15-lipoxygenase-1 (15-LOX-1) | €170.00 | |
3617 | 1R,3R-RSL3 (negative control) | Negative control of 1S,3R-RSL3 as GPX4 inhibitor | €90.00 | |
1902 | 4μ8C | IRE1α inhibitor | €105.00 | |
3476 | 5-NIdR | Potent inhibitor of translesion DNA synthesis (TLS) | €120.00 | |
4008 | A-1210477 | Potent and selective inhibitor of MCL-1 | Inquire | |
2141 | ABT 199 | Potent, orally bioavailable BCL-2-selective inhibitor | €70.00 | |
3821 | ABT-263 | Potent, selective and orally bioavailable inhibitor of B-cell lymphoma-2 (BCL-2) family proteins | Inquire | |
3590 | ACT001 | PAI-1 inhibitor | €210.00 | |
3039 | ACY-241 | Selective and orally available HDAC6 inhibitor | €120.00 | |
2552 | Adjudin | Non-hormonal male contraceptive with anti-proliferative activity | €125.00 | |
1291 | AEG 3482 | JNK inhibitor | €90.00 | |
2269 | AK 1 | Potent inhibitor of SIRT with good selectivity for SIRT2 over SIRT1 and SIRT3 | €90.00 | |
2270 | AK 7 | Potent, brain-permeable and selective inhibitor of SIRT2 | €90.00 | |
3524 | AKOS-022 | VDAC1 inhibitor | €120.00 | |
3834 | Alantolactone | STAT3 inhibitor; NLRP3 inhibitor | €90.00 | |
2639 | AMG 232 | Potent, selective, and orally bioavailable MDM2-p53 inhibitor | €120.00 | |
3686 | AMG-176 | Potent and selective Mcl-1 inhibitor | €490.00 | |
2368 | Amuvatinib | RTK inhibitor which effectively inhibits PDGFR, c-Kit and c-Met | €105.00 | |
2717 | Apigenin | Selective inhibitor of Casein kinase 2 (CK2) | €70.00 | |
3328 | APIO-EE-07 | Dual RSK1/MSK2 inhibitor | €140.00 | |
2251 | Apoptozole | Inhibitor of ATPase activity of Hsc70 and Hsp70 | €95.00 | |
2883 | APPA | Aldose reductase inhibitor | €105.00 | |
2394 | AR-42 | HDAC inhibitor | €125.00 | |
3433 | ARB-272572 | Potent, cellular active PD-L1 inhibitor | €150.00 | |
3041 | ARN 3236 | Potent, selective, ATP-competitive, and orally available inhibitor of SIK2 | €80.00 | |
2839 | AS 1842856 | Inhibitor of the Forkhead box protein O1 (FOXO1) | €95.00 | |
2179 | ASK1 Inhibitor 10 | Potent, selective, and orally bioavailable ASK1 inhibitor | €130.00 |