Proteases (ω)

Proteases, also known as proteolytic enzymes, are enzymes that catalyze the breakdown of proteins by hydrolysis of peptide bonds. By cleaving proteins, proteases are involved in the control of a large number of key physiological processes such as cell-cycle progression, cell proliferation and cell death, DNA replication, tissue remodeling, haemostasis (coagulation), wound healing and the immune response. So far, inappropriate proteolysis has been found to have a major role in cancer as well as cardiovascularinflammatoryneurodegenerativebacterial, viral and parasitic diseases. Because excessive proteolysis can be prevented by blocking the appropriate proteases, this area is widely explored by pharmaceutical companies. Their mechanism of action classifies the large family of proteases as either serinecysteine or threonine proteases (amino-terminal nucleophile hydrolases), or as asparticmetallo and glutamic proteases (with glutamic proteases being the only subtype not found in mammals so far)[1]. Interestingly, the serine and cysteine proteases act directly as nucleophiles to attack the substrate (by generating covalent acyl enzyme intermediates). On the other hand, the aspartyl and zinc proteases activate water molecules as the direct attacking species on the peptide bond. Proteases of the different classes can be further grouped into families on the basis of amino acid sequence comparison, and families can be assembled into clans based on similarities in their three-dimensional structures[2].
A wide variety of cysteine proteases (CPs) exists, that share the common feature of hydrolyzing substrates by direct nucleophilic attack of a deprotonated cysteine residue at the enzyme’s catalytic site. CPs are responsible for many biochemical processes occurring in living organisms and they have been implicated in the development and progression of several diseases that involve abnormal protein turnover. The activity of CPs is regulated among others by their specific inhibitors: cystatins. Mammalian cysteine proteinases fall into two classes: caspases and the papain superfamily comprising the papain family, calpains and bleomycin hydrolases[3].

[1] Targeting proteases: successes, failures and future prospects. Boris Turk. Nature Reviews – Drug Discovery. Volume 5, 2006, 785-799.
[2] Proteases: Multifunctional Enzymes in Life and Disease. C. López-Otín, J.S. Bond. J. Biol. Chem. 2008, 283, 30433-30437.
[3] M. Rzychon, D. Chmiel, J. Stec-Niemczyk. Modes of inhibition of cysteine proteases. Act. Biochim. Pol. 2004, 51, 861-873.

10 Item(s)

per page
Axon ID Name Description From price
1798 Eeyarestatin I Inhibitor of endoplasmic reticulum associated protein degradation (ERAD) €80.00
2449 LDN 57444 Reversible, competitive inhibitor of UCH-L1 deubiquitinase €95.00
2309 ML 323 Selective, reversible and potent inhibitor of the USP1–UAF1 deubiquitinase complex €95.00
2678 ML364 Inhibitor of the deubiquitinase USP2 €125.00
2228 NSC 687852 Inhibitor of 19S regulatory-particle–associated deubiquitinases (DUBs: UCHL5 and USP14) €90.00
2011 P 005091 Inhibitor of deubiquitinase USP7 and USP47 €95.00
1906 P 22077 Inhibitor of deubiquitinase USP7 and USP47 €95.00
2512 Spautin 1 Inhibitor of USP10 and USP13 and Beclin1 related autophagy €95.00
2333 TCID Potent inhibitor of UCHL3 with >100-fold selectivity over UCHL1 €80.00
1779 WP 1130 Deubiquitinase Inhibitor €95.00

10 Item(s)

per page
Please wait...